Better Exponential Curve Fitting Using Excel

Mike Middleton DSI 2010 San Diego

Michael R. Middleton, Ph.D. Decision Toolworks Mike@DecisionToolworks.com 415.310.7190

Background

- The exponential function, Y=c*EXP(b*x), is useful for fitting some non-linear single-bulge data patterns.
- In Excel, you can create an XY (Scatter) chart and add a best-fit "trendline" based on the exponential function.
- **Problem**: Regarding the fitted curve for Excel's Exponential Trendline,

(1) the reported value for R Squared is incorrect, and

(2) the fitted values do not minimize Sum of Squared Deviations.

Cisco Revenue Example

- Data from example originally presented in Winston (2004)
- Model for growth of Cisco revenue during 1900-1999
- Potentially useful for projecting revenues and determining company value
- For 1900-1999, Cisco revenue seems to grow by approximately the same percentage each year
- The exponential function, Y=c*EXP(b*X), has the property that for each unit increase in X the value of Y increases by a constant percentage

Cisco Data and XY Chart

- In Excel 2010, select data A4:B13. Insert XY Scatter chart. Use Chart Tools Layout to add chart title and axes titles.
- Right-click a data point to select the data series, and choose Add Trendline from the shortcut menu.

Trendline Dialog Box

rendline Options	Trendline Options
ine Color	Trend/Regression Type
ine Style	Exponential
hadow	🖉 💿 Linear
low and soft Edges	
	© Polynomial Order: 2
	Dever
	Moving Average Period: 2
	Trendline Name Image: Automatic : Expon. (Series 1) Image: Custom: Image: Automatic 2 and 2
	Forecast Eorward: 0.0 periods Backward: 0.0 periods
	Set Intercept = 0.0
	 Display Equation on chart Display <u>R</u>-squared value on chart

Excel Chart with Exponential Trendline

Next, compute the fitted values for Y, and use worksheet functions and formulas to compute the actual value of R Squared

Actual R Squared for Exponential Trendline

	А	В	С	D	E	F	G	Н
1		\$ Millions			Exponential Trendli	Exponential Trendline		
2	Year	Revenue						
3	Х	Y	Fitted Y					
4	1	\$70	\$103		SS Total	156,733,316		Total SS
5	2	\$183	\$183		SS Regression	125,667,007		Explained SS
6	3	\$340	\$323		SS Residual	31,066,309		Unexplained SS, SSD
7	4	\$649	\$571					
8	5	\$1,243	\$1,009		R Squared	0.802		Explained SS / Total SS
9	6	\$1,979	\$1,783					
10	7	\$4,096	\$3,151		StDev(Residuals)	\$1,763		
11	8	\$6,440	\$5,568					
12	9	\$8,459	\$9,840					
13	10	\$12,154	\$17,389					

Excel's Trendline reports R Squared = 0.9828

Actual R Squared = 0.802

"Approximately 80% of the variation in Y is explained by X using the fitted exponential function"

"Shortcut" Excel functions for R Squared calculations

	Α	В	С	DE	F	G	Н
1		\$ Millions		Exponential Trend	dline		
2	Year	Revenue					
3	Х	Y	Fitted Y				
4	1	\$70	\$103	SS Total	=COUNT(B4:B13)*VARP(B4:B13)		Total SS
5	2	\$183	\$183	SS Regression	=F4-F6		Explained SS
6	3	\$340	\$323	SS Residual	=SUMXMY2(B4:B13,C4:C13)		Unexplained SS, SSD
7	4	\$649	\$571				
8	5	\$1,243	\$1,009	R Squared	=F5/F4		Explained SS / Total SS
9	6	\$1,979	\$1,783				
10	7	\$4,096	\$3,151	StDev(Residuals)	=SQRT(F6/COUNT(B4:B13))		
11	8	\$6,440	\$5,568				
12	9	\$8,459	\$9,840				
13	10	\$12,154	\$17,389				

Note that we cannot use Excel's worksheet functions RSQ or PEARSON^2 or CORREL^2 to compute R Squared because those functions are based on a linear fit between Y and X.

Setup display for better fit using Excel's Solver

	Α	В	С	D	E	F	G	Н
1		\$ Millions			Coeff c	Coeff b		
2	Year	Revenue			58.55266	0.569367		
3	Х	Y	c*EXP(b*X)					
4	1	\$70	\$103		SS Total	156,733,316		Total SS
5	2	\$183	\$183		SS Regression	125,666,623		Explained SS
6	3	\$340	\$323		SS Residual	31,066,693		Unexplained SS, SSD
7	4	\$649	\$571					
8	5	\$1,243	\$1,009		R Squared	0.802		Explained SS / Total SS
9	6	\$1,979	\$1,783					
10	7	\$4,096	\$3,151		StDev(Residuals)	\$1,763		
11	8	\$6,440	\$5,568					
12	9	\$8,459	\$9,840					
13	10	\$12,154	\$17,389					

Tentative values for coefficients in E2:F2 (Solver "Changing Cells")

Formula for fitted value in C4 depends on coefficients and X, copied to C5:C13

Sum of Squared Deviations formula in F6 (Solver "Objective") to be minimized

Setup formulas for better fit using Excel's Solver

	А	В	С	D	Е	F	G	Н
1		\$ Millions			Coeff c	Coeff b		
2	Year	Revenue			58.55266	0.569367		
3	Х	Y	c*EXP(b*X)					
4	1	\$70	=\$E\$2*EXP(\$F\$2*A4)		SS Total	=COUNT(B4:B13)*VARP(B4:B13)		Total SS
5	2	\$183	=\$E\$2*EXP(\$F\$2*A5)		SS Regression	=F4-F6		Explained SS
6	3	\$340	=\$E\$2*EXP(\$F\$2*A6)		SS Residual	=SUMXMY2(B4:B13,C4:C13)		Unexplained SS, SSD
7	4	\$649	=\$E\$2*EXP(\$F\$2*A7)					
8	5	\$1,243	=\$E\$2*EXP(\$F\$2*A8)		R Squared	=F5/F4		Explained SS / Total SS
9	6	\$1,979	=\$E\$2*EXP(\$F\$2*A9)					
10	7	\$4,096	=\$E\$2*EXP(\$F\$2*A10)		StDev(Residuals)	=SQRT(F6/COUNT(B4:B13))		
11	8	\$6,440	=\$E\$2*EXP(\$F\$2*A11)					
12	9	\$8,459	=\$E\$2*EXP(\$F\$2*A12)					
13	10	\$12,154	=\$E\$2*EXP(\$F\$2*A13)					

Tentative values for coefficients in E2:F2 (Solver "Changing Cells")

Formula for fitted value in C4 depends on coefficients and X (absolute references to E2:F2, relative reference to A4), copied to C5:C13

Sum of Squared Deviations formula in F6 (Solver "Objective") to be minimized

Excel 2010 Solver Parameters Dialog Box

Mi <u>n</u>	💮 <u>V</u> alue Of:	0	
		A (Add
		[<u>C</u> hange
		[Delete
		[<u>R</u> eset All
		-	Load/Save
ables Non-N	legative		
GR	G Nonlinear		Options
gine for So lems, and	lver Problems that are select the Evolutionar	smooth nonlinear. y engine for Solver p	Select the LP Simplex problems that are
	Min ables Non-N GR(agine for So	Min © <u>V</u> alue Of: ables Non-Negative GRG Nonlinear Igine for Solver Problems that are lems, and select the Evolutionar	Min O <u>V</u> alue Of: 0

Excel 2010 Solver Options Dialog Boxes

Options 8 ×	Options	2
All Methods GRG Nonlinear Evolutionary	All Methods GRG Nonlinea	Evolutionary
Constraint Precision: 0.000001	Co <u>n</u> vergence:	0.0001
✓ Use Automatic Scaling Show Iteration Results	Derivatives ⊙ <u>F</u> orward C) C <u>e</u> ntral
Solving with Integer Constraints	Multistart	
□ Ignore Integer Constraints	Use <u>M</u> ultistart	
	Population Size:	100
	Pandom Seed:	
Solving Limits	Require Bounds on Va	0 ariables
Max <u>T</u> ime (Seconds):		
Iterations:		
Evolutionary and Integer Constraints:		
Max Subproblems:		
Max <u>F</u> easible Solutions:		
<u>OK</u> <u>C</u> ancel		<u>OK</u> <u>C</u> anc

х

Results for Exponential Fit using Solver

	Α	В	С	D	E	F	G	Н
1		\$ Millions			Coeff c	Coeff b		
2	Year	Revenue			217.0084285	0.40542436		
3	Х	Y	c*EXP(b*X)					
4	1	\$70	\$325		SS Total	156,733,316		Total SS
5	2	\$183	\$488		SS Regression	154,746,736		Explained SS
6	3	\$340	\$732		SS Residual	1,986,580		Unexplained SS, SSD
7	4	\$649	\$1,098					
8	5	\$1,243	\$1,648		R Squared	0.987		Explained SS / Total SS
9	6	\$1,979	\$2,471					
10	7	\$4,096	\$3,707		StDev(Residuals)	\$446		
11	8	\$6,440	\$5,560					
12	9	\$8,459	\$8,339					
13	10	\$12,154	\$12,509					

Excel's Trendline reported R Squared = 0.9828, but its actual R Squared = 0.802 and StDev(Residuals) = \$1,763

Solver's better fit has actual R Squared = 0.987 and StDev(Residuals) = \$446

Visual Comparison of Fits

Cisco Annual Revenue, 1990-1999

Comparison of Current/Previous Ratios

	\$ Millions			R^2=0.802, SD(Resid)=\$1763			R^2=0.987	, SD(Resid)=\$446
Year	Revenue	Actual		Trendlin	e Exponential		Solver F	it Exponential
Х	Y	Current/Previous		Fitted Y	Current/Previous		Fitted Y	Current/Previous
1	\$70			\$103			\$325	
2	\$183	2.614		\$183	1.767		\$488	1.500
3	\$340	1.858		\$323	1.767		\$732	1.500
4	\$649	1.909		\$571	1.767		\$1,098	1.500
5	\$1,243	1.915		\$1,009	1.767		\$1,648	1.500
6	\$1,979	1.592		\$1,783	1.767		\$2,471	1.500
7	\$4,096	2.070		\$3,151	1.767		\$3,707	1.500
8	\$6,440	1.572		\$5,568	1.767		\$5,560	1.500
9	\$8,459	1.314		\$9,840	1.767		\$8,339	1.500
10	\$12,154	1.437		\$17,389	1.767		\$12,509	1.500
Average Ra	tio, 2 to 10	1.809						
Average Ra	tio, 3 to 10	1.708						
Average Ra	tio, 8 to 10	1.441						

Excel's Method for Fitting Exponential Trendline, 1 of 2

"The exponential model creates a trendline using the equation

 $y = c * e^{bx}$.

Excel uses a log transformation of the original y data to determine fitted values, so the values of the dependent variable in your data set must be positive.

The exponential trendline feature does not find values of *b* and *c* that minimize the sum of squared deviations between actual *y* and predicted $y (= c * e^{bx})$. Instead, Excel's method takes the logarithm of both sides of the exponential formula, which then can be written as

Ln(y) = Ln(c) + b * x

and uses standard linear regression with Ln(y) as the dependent variable and x as the explanatory variable. That is, Excel finds the intercept and slope that minimize the sum of squared deviations between actual Ln(y) and predicted Ln(y), using the formula

Ln(y) = Intercept + Slope * x.

Therefore, the Intercept value corresponds to Ln(*c*), and *c* in the exponential formula is equal to Exp(Intercept). The Slope value corresponds to *b* in the exponential formula." - Middleton (1995)

Excel's Method for Fitting Exponential Trendline, 2 of 2

General Steps for Curve Fitting

Goal: explain variation in a variable of interest, Y Prepare a histogram for Y, the dependent (or response) variable Find data for explanatory variable(s) that make sense Look at the data: plot XY (Scatter) charts to see relationships Propose a functional form for the relationship, based on knowledge of the underlying process, visual examination of the plot, parsimony, etc. Determine values for the parameters of the function best fit, minimize sum of squared deviations answers the question: What is the relationship? Perform diagnostics, e.g., R Squared, StDev(Residuals), etc. answers the question: How good is the relationship? Use the function prediction for cross-sectional data, mostly interpolation forecasts for time-series data, mostly extrapolation

Summary of Excel Trendline Options

- Exponential: Y=c*EXP(b*X), transforms data before fit, not the best fit, inaccurate R Squared
- Linear: $Y=b_0+b_1^*X$, OK
- Logarithmic: Y = c*LN(X)+b, OK
- Polynomial: Y=b₀+b₁*X₁+b₂*X₂+..., OK
- Power: Y = c*X^b, transforms data before fit, not the best fit, inaccurate R Squared
- Moving Average: OK, but non-standard diagnostics

Excel's Method for Fitting Power Trendline

The power model creates a trendline using the equation

 $y = c * x^b$.

Excel uses a log transformation of the original *x* and *y* data to determine fitted values, so the values of both the dependent and explanatory variables in your data set must be positive.

The power trendline feature does not find values of *b* and *c* that minimize the sum of squared deviations between actual *y* and predicted $y (= c * x^b)$. Instead, Excel's method takes the logarithm of both sides of the power formula, which then can be written as

Ln(y) = Ln(c) + b * Ln(x),

and uses standard linear regression with Ln(y) as the dependent variable and Ln(x) as the explanatory variable. That is, Excel finds the intercept and slope that minimize the sum of squared deviations between actual Ln(y) and predicted Ln(y), using the formula

Ln(y) = Intercept + Slope * Ln(x).

Therefore, the Intercept value corresponds to Ln(c), and c in the power formula is equal to Exp(Intercept). The Slope value corresponds to b in the power formula.

...

References

- Middleton, M.R. 1995. Data Analysis Using Microsoft Excel 5.0. Duxbury Press, Belmont, CA.
- Winston, W.L. 2004. Microsoft Excel Data Analysis and Business Modeling. Microsoft Press, Redmond, WA.

Better Exponential Curve Fitting Using Excel

Mike Middleton, DSI 2010 San Diego

Michael R. Middleton, Ph.D. Decision Toolworks Mike@DecisionToolworks.com 415.310.7190

PowerPoint Slides, Slides PDF File, and Excel Workbook

http://www.DecisionToolworks.com/ExpCurveFit2010.pptx http://www.DecisionToolworks.com/ExpCurveFit2010.pdf http://www.DecisionToolworks.com/ExpCurveFit2010.xlsx